Finally, Merchandising Tools for Metadata

  |  August 11, 2006   |  Comments

Finally! New tools mean marketers and merchandisers can quickly, easily, and inexpensively harness the power of metadata.

A couple years ago, I wrote a series on metadata. For those unfamiliar with the term, metadata is data about data. A sweater's metadata, for example, includes its color, available sizes, fabric, and style. A computer's metadata includes information about the components inside, speed, amount of memory, and size of its hard drive.

Metadata can be used to simplify product categories by creating search mechanisms that allow the user to refine a search by attributes while staying in the same category. Instead of having a separate category for 24k gold necklaces that are 13 in. long, for instance, simply have a "necklaces" category and let the user filter the products by metal type, karat, and length.

Metadata can also be used for personalization by correlating product attributes together in an effort to effectively cross- and up-sell products that are similar or complementary to the product the user's viewing.

At the time, I wrote about the advanced personalization that can be performed with metadata. But there were no off-the-shelf tools to make this process easy. We'd just finished building our own tool for a multichannel retail client. Now that's changed. I recently saw a sneak preview of Intelligent Cross-Sell, a new product from CNET Channel, a subsidiary of CNET.

Most people know CNET as a source for product reviews and detailed product specs. CNET Channel is its own business that feeds product data to such retailers as CDW, Amazon.com, and Best Buy. Because it has a vast collection of metadata on every electronics product, importing information about products from CNET Channel is much cheaper for these companies than creating it from scratch.

CNET's subsidiary is going beyond merely providing the data. Recognizing the power inherent in metadata, it's creating applications that use it. Most electronics companies already use its product comparison feature. It lists the metadata of various products next to each other. Intelligent Cross-Sell is a huge step toward effective one-to-one personalization using metadata.

In essence, it's a large, rules-based engine whose sole purpose is to recommend products based on complex metadata filters. An electronics Web site might want to recommend products that would be good cross-sells for a computer, for example. Although most retailers use traditional technologies for collaborative filtering, some are now realizing the potential of using metadata for these recommendations. In the collaborative filtering world, recommendations are based on what other people bought with the computer. This may or may not include products that really are a good fit.

By harnessing metadata, retailers can present products that really fit with the current product. They can present exactly the correct memory that's compatible with the computer because the system knows how much memory the computer has on board, how many expansion slots it has for more memory, and what size chips it takes. Further, the system knows which memory chips and brands are compatible with each motherboard and what their speeds are. So the system can generate intelligent recommendations. Moreover, the system can explain to the user why the product's a perfect match. The rules-based engine can ensure certain brands are preferred over others if needed or any other business rule that goes beyond the actual data.

Though the CNET Channel product is currently filled with data about electronics, its system allows users to import other data. A company called Muze provides retailers with metadata about books, music, and movies. Muze would be wise to look into this platform for current customers.

Having spent several years as director of personalization at barnesandnoble.com, I can immediately think of easy applications. When my team created the "People who bought this product also bought..." functionality, we very carefully analyzed the importance of metadata over various book categories. The publisher is very important to techies buying books on programming, for example. The author is very important to people buying fiction. Genre is very important to people buying nonfiction. This method of weighing metadata enabled us to create lists of cross-sells that were much more targeted based on the kind of book in question than collaborative filtering or simple statistical analysis could provide.

If we could have imported that information into CNET Channel's rules-based engine, I suspect the process would have been greatly simplified. We could have also created internal lists of New York Times Best Sellers, Oprah's book lists, award winners, books currently in the news, and the like and weighted recommendations based on that data. We could have added business rules on top of that to harness even finer metadata (such as not recommending books that are too heavy and would therefore increase shipping costs to the extent where we'd risk losing the sale).

I'm very excited about the emerging tools specifically geared toward merchandising. There have been metadata search engines before (like Verity, which allows a weighted search similar to my barnesandnoble.com example), but these tended to be large applications not geared toward ease of use for merchandisers. Because these new tools are Web-based, they're easy to integrate and don't require the IT infrastructure larger metadata databases do. In the past, we had to build these applications ourselves. That's costly and requires IT staff maintenance.

These tools are easier for marketers and merchandisers to use and are modularized to solve specific problems. The end result is the ability to quickly harness the power of metadata in ways we've been dreaming about for years.

Questions, thoughts, comments? Let me know.

Until next time...

Jack

ClickZ Live Chicago Join the Industry's Leading eCommerce & Direct Marketing Experts in Chicago
ClickZ Live Chicago (Nov 3-6) will deliver over 50 sessions across 4 days and 10 individual tracks, including Data-Driven Marketing, Social, Mobile, Display, Search and Email. Check out the full agenda and register by Friday, Oct 3 to take advantage of Early Bird Rates!

ABOUT THE AUTHOR

Jack Aaronson

Jack Aaronson, CEO of The Aaronson Group and corporate lecturer, is a sought-after expert on enhanced user experiences, customer conversion, retention, and loyalty. If only a small percentage of people who arrive at your home page transact with your company (and even fewer return to transact again), Jack and his company can help. He also publishes a newsletter about multichannel marketing, personalization, user experience, and other related issues. He has keynoted most major marketing conferences around the world and regularly speaks at Shop.org and other major industry shows. You can learn more about Jack through his LinkedIn profile.

COMMENTSCommenting policy

comments powered by Disqus

Get the ClickZ Analytics newsletter delivered to you. Subscribe today!

COMMENTS

UPCOMING EVENTS

Featured White Papers

IBM: Social Analytics - The Science Behind Social Media Marketing

IBM Social Analytics: The Science Behind Social Media Marketing
80% of internet users say they prefer to connect with brands via Facebook. 65% of social media users say they use it to learn more about brands, products and services. Learn about how to find more about customers' attitudes, preferences and buying habits from what they say on social media channels.

An Introduction to Marketing Attribution: Selecting the Right Model for Search, Display & Social Advertising

An Introduction to Marketing Attribution: Selecting the Right Model for Search, Display & Social Advertising
If you're considering implementing a marketing attribution model to measure and optimize your programs, this paper is a great introduction. It also includes real-life tips from marketers who have successfully implemented attribution in their organizations.

Resources

Jobs

    • Recent Grads: Customer Service Representative
      Recent Grads: Customer Service Representative (Agora Financial) - BaltimoreAgora Financial, one of the nation's largest independent publishers...
    • Managing Editor
      Managing Editor (Common Sense Publishing) - BaltimoreWE’RE HIRING: WE NEED AN AMAZING EDITOR TO POLISH WORLD-CLASS CONTENT   The Palm...
    • Senior Paid Search & Advertising Manager
      Senior Paid Search & Advertising Manager (Smarty Had A Party) - St. LouisCompany Description: A warm, loving, [slightly wacky] startup, we view...