Forecasting Techniques, Part 1: Quantitative Methods

  |  July 25, 2006   |  Comments

A look at forecasting and some techniques used to assess and understand future trends. Part one of a series.

Over the past few weeks, I've been taking a look at various analytical techniques that may be appropriate for understanding more about visitor behavior than you may find in your average Web analytics tool. Many of these techniques, like classification and segmentation, involve the use of statistical analysis tools. This week, I'll continue in that vein by looking at forecasting and some of the techniques used to assess and understand future trends.

As businesses build their data trends, those trends become more interesting and useful. One problem with a fast-growing environment in which all charts show lines shooting up and to the right is it's difficult to know what the underlying trends are and whether marketing activity is affecting this growth.

There are two broad categories of forecasting techniques: quantitative methods and qualitative methods. Quantitative methods are based on algorithms of varying complexity, while qualitative methods are based on educated guessing. I'll focus on quantitative methods here. In part two, I'll look at qualitative methods.

Quantitative methods come in two main types: time-series methods and explanatory methods. Time-series methods make forecasts based purely on historical patterns in the data. Say you want to forecast site visitors over the next few weeks. Time-series methods only use historical site visit data to make that forecast.

Explanatory methods use other data as inputs into the forecasting data. In the previous example, you might include marketing data as inputs into a model to understand how they affect visit levels and to forecast future visits with those data. These types of techniques have been used for ages in the offline world to evaluate marketing activity's effect on brand awareness or sales.

Time-series methods are probably the simplest methods to deploy and can be quite accurate, particularly over the short term. Most quantitative forecasting methods try to explain patterns in historical data as a means of using those patterns to forecast future patterns.

Simple time-series methods include moving average models. In this case, the forecast is the average of the last "x" number of observations, where "x" is some suitable number. If you're forecasting monthly sales data, you might use a 12-month moving average, where the forecast for the next month is the average over the past year.

Trouble is, simple averaging methods don't tend to work well when there's either a trend in the data or seasonal effects. This tends to be the case in a lot of marketing data! In that case, other techniques, such as exponential smoothing, may be more appropriate.

With moving averages, every data point carries equal weight in making the forecast. With smoothing methods, more importance is placed on the most recent data than on the historical data. If there's a trend in the data, it'll use the recent observations to make up the bulk of the forecast, and the forecast is more likely to reflect the trend.

Moving averages and simple exponential smoothing techniques are available in Excel and easy to execute. That's part of the great advantage of time-series methods: they're generally simple, cheap to run, and relatively easy to interpret.

There are more complex time-series techniques as well, such as ARIMA (define) and Box-Jenkins (define) models. These are heavier duty statistical routines that can cope with data with trends and the seasonality in them. You'd probably need to invest in a statistical analysis package or a dedicated forecasting package to use these more powerful algorithms. Like any analytical technique, though, you shouldn't use them blindly or treat results as gospel. All forecasts are invariably wrong, in fact. It's just a question of how wrong they are.

So why would you use these heavier duty forecasting techniques?

Forecasting techniques are often used as much for their explanatory power as for their predictive power. Understanding the trends and seasonal behavior of your business provides a better understanding of its underlying health.

In consumer goods marketing, for example, these types of forecasting techniques are often used to assess a brand's baseline performance. A forecast is made of what the sales would have been in the absence of certain types of promotions or advertising so underlying trends can be assessed.

Explanatory forecasting methods take the process a step further and allow you to relate changes in marketing activity to changes in such outputs as sales, brand awareness, and registrations. Here, we're looking for causality and can feed that into forecasts as a way of evaluating marketing response. We'll take a look at this in more detail next time.

Till then...

ClickZ Live New York What's New for 2015?
You spoke, we listened! ClickZ Live New York (Mar 30-Apr 1) is back with a brand new streamlined agenda. Don't miss the latest digital marketing tips, tricks and tools that will make you re-think your strategy and revolutionize your marketing campaigns. Super Saver Rates are available now. Register today!

ABOUT THE AUTHOR

Neil Mason

Neil Mason is SVP, Customer Engagement at iJento. He is responsible for providing iJento clients with the most valuable customer insights and business benefits from iJento's digital and multichannel customer intelligence solutions.

Neil has been at the forefront of marketing analytics for over 25 years. Prior to joining iJento, Neil was Consultancy Director at Foviance, the UK's leading user experience and analytics consultancy, heading up the user experience design, research, and digital analytics practices. For the last 12 years Neil has worked predominantly in digital channels both as a marketer and as a consultant, combining a strong blend of commercial and technical understanding in the application of consumer insight to help major brands improve digital marketing performance. During this time he also served as a Director of the Web Analytics Association (DAA) for two years and currently serves as a Director Emeritus of the DAA. Neil is also a frequent speaker at conferences and events.

Neil's expertise ranges from advanced analytical techniques such as segmentation, predictive analytics, and modelling through to quantitative and qualitative customer research. Neil has a BA in Engineering from Cambridge University and an MBA and a postgraduate diploma in business and economic forecasting.

COMMENTSCommenting policy

comments powered by Disqus

Get the ClickZ Analytics newsletter delivered to you. Subscribe today!

COMMENTS

UPCOMING EVENTS

UPCOMING TRAINING

Featured White Papers

Google My Business Listings Demystified

Google My Business Listings Demystified
To help brands control how they appear online, Google has developed a new offering: Google My Business Locations. This whitepaper helps marketers understand how to use this powerful new tool.

5 Ways to Personalize Beyond the Subject Line

5 Ways to Personalize Beyond the Subject Line
82 percent of shoppers say they would buy more items from a brand if the emails they sent were more personalized. This white paper offer five tactics that will personalize your email beyond the subject line and drive real business growth.

WEBINARS

Resources

Jobs

    • Customer Service Consultant
      Customer Service Consultant (Bonner and Partners) - Delray BeachBonner & Partners: Full-time Customer Service Consultant Position Who we are...
    • Financial Editor
      Financial Editor (Confidential) - DurhamSIX FIGURE EDITORS WANTED: To enforce lofty NEW editing standards. Easy Conditions Unlikely. Promotion and...
    • Information Processing Specialist
      Information Processing Specialist (Agora Inc. ) - BaltimoreInformation Processing Specialist – The IP specialist position ensures the successful...