Data Integration, Part 2: Micro Integration

  |  April 4, 2006   |  Comments

What's the bestway to integrate Web analytics data with other forms of data? Last of a two-part series.

One thing about digital marketing: we aren't short of numbers. Typically, we have numbers coming in from our Web analytic systems, our PPC (define) consoles, our affiliate marketing systems, our ad-serving data, and so on. On average, a marketer may have five or six different data sources, if not more.

The challenge is to make sense of it all. The last column looked at what I call macro data integration. Macro integration is about pulling together data at the summarized level to relate different data sets together and spot trends and exceptions.

You want to be able to act far more tactically on data, however; so you'll want think about micro data integration as well. Micro data integration is when different data sources are integrated at a much more granular level. Often, this is conducted at the customer level.

Why would you want to think about micro data integration? For a number of reasons:

  • To enhance the value of the data you hold on a customer or product

  • To enable better diagnostic analysis of marketing activity

  • To be able to execute personalized or event-driven marketing programs

You may want to combine data from a Web analytics system on browsing behavior with on- and offline shopping data, for example, so you can be more specific and targeted in direct marketing activities. Or you may want to look at the long-term value of customers brought in by different acquisition channels.

Often the question is asked about the best place to integrate the data. Should data be imported into your Web analytics tool or a CRM (define) system or something similar? The answer is driven by your objectives and may involve both activities.

If the objectives are to improve the customer marketing processes, the best route will probably be to export certain data from the Web analytics system into the CRM system, as the CRM system usually drives the operation of the outbound marketing activity. The customer database or CRM system provides the total customer view; data from the Web analytics system will be just one component of that view.

Another reason you may want to export data from a Web analytics system into another database is because you want to analyze that data using other tools. Web analytics systems can report data in a variety of ways, but you may wish to conduct some more sophisticated statistical analysis using such tools as SAS, Clementine, SPSS, and the like. In some of the work we do, we process data using a Web analytics system to generate visitor level records, which we then look at using data-mining tools for interesting behavior patterns.

Other times, it may be useful to enhance data in a Web analytics tool by importing data from other sources, such as the marketing, customer, or product database. This is likely to be more useful when you need a site-centric rather than a customer-centric view. For example:

  • Which type of people look at what types of content?

  • Which acquisition channels provide the greatest ROI (define)?

  • Which campaigns tend to acquire the least loyal customers?

Thinking about what data to move requires careful planning. Different data sources have different data structures, and they won't necessarily fit easily together. Often, this means the data must be manipulated or transformed in some way so you can lay it alongside the other data.

The volume of data exported or imported is an issue as well. This also affects how often you integrate the data. Monthly? Weekly? Daily? Web sites generate huge volumes of data. It's often impractical and unwieldy to extract data in its rawest format. Think about what you want to do with the data, and create summarized variables if possible. If you want visit-based recency and frequency data in the customer database, for example, it's preferable to create a couple of summary variables, such as date of last visit and number of total visits, rather than import the whole customer's visit history.

The good news is Web analytics systems are becoming increasingly open and able to operate with other systems. The launch of WebTrends 8 and WebTrends Marketing Warehouse last month are steps in the right direction for making it easier for users to "micro-integrate" their data.

Till next time.

ClickZ Live Toronto On the heels of a fantastic event in New York City, ClickZ Live is taking the fun and learning to Toronto, June 23-25. With over 15 years' experience delivering industry-leading events, ClickZ Live offers an action-packed, educationally-focused agenda covering all aspects of digital marketing. Register today!

ClickZ Live San Francisco Want to learn more? Join us at ClickZ Live San Francisco, Aug 10-12!
Educating marketers for over 15 years, ClickZ Live brings together industry thought leaders from the largest brands and agencies to deliver the most advanced, educational digital marketing agenda. Register today and save $500!


Neil Mason

Neil Mason is SVP, Customer Engagement at iJento. He is responsible for providing iJento clients with the most valuable customer insights and business benefits from iJento's digital and multichannel customer intelligence solutions.

Neil has been at the forefront of marketing analytics for over 25 years. Prior to joining iJento, Neil was Consultancy Director at Foviance, the UK's leading user experience and analytics consultancy, heading up the user experience design, research, and digital analytics practices. For the last 12 years Neil has worked predominantly in digital channels both as a marketer and as a consultant, combining a strong blend of commercial and technical understanding in the application of consumer insight to help major brands improve digital marketing performance. During this time he also served as a Director of the Web Analytics Association (DAA) for two years and currently serves as a Director Emeritus of the DAA. Neil is also a frequent speaker at conferences and events.

Neil's expertise ranges from advanced analytical techniques such as segmentation, predictive analytics, and modelling through to quantitative and qualitative customer research. Neil has a BA in Engineering from Cambridge University and an MBA and a postgraduate diploma in business and economic forecasting.

COMMENTSCommenting policy

comments powered by Disqus

Get the ClickZ Analytics newsletter delivered to you. Subscribe today!



Featured White Papers

Gartner Magic Quadrant for Digital Commerce

Gartner Magic Quadrant for Digital Commerce
This Magic Quadrant examines leading digital commerce platforms that enable organizations to build digital commerce sites. These commerce platforms facilitate purchasing transactions over the Web, and support the creation and continuing development of an online relationship with a consumer.

Paid Search in the Mobile Era

Paid Search in the Mobile Era
Google reports that paid search ads are currently driving 40+ million calls per month. Cost per click is increasing, paid search budgets are growing, and mobile continues to dominate. It's time to revamp old search strategies, reimagine stale best practices, and add new layers data to your analytics.




    • GREAT Campaign Project Coordinator
      GREAT Campaign Project Coordinator (British Consulate-General, New York) - New YorkThe GREAT Britain Campaign is seeking an energetic and creative...
    • Paid Search Senior Account Manager
      Paid Search Senior Account Manager (Hanapin Marketing) - BloomingtonHanapin Marketing is hiring a strategic Paid Search Senior Account Manager...
    • Paid Search Account Manager
      Paid Search Account Manager (Hanapin Marketing) - BloomingtonHanapin Marketing is hiring an experienced Paid Search Account Manager to...