Retention, Not Reacquisition

  |  April 12, 2011   |  Comments

Digital marketers adopt classic offline retention strategies.

When is retention not retention? When it's just reacquisition! More and more companies are paying attention to customer lifetime value and how they can build on their investments in winning new customers. This applies equally to consumer organizations, business to business organizations, and membership organizations. All the heavy lifting has been done getting that new customer on board, but how can we generate more value and how does customer data analysis help do that?

The role of customer data analysis in retention is to increase the propensity that a customer will do business with you again at a lower cost than the first time they did business with you. There are two things going on here: increasing propensity and lowering costs. Increasing propensity is about making yourself more relevant by getting the value proposition message across. The more relevant you are, the more likely that someone will come back again, and by analysing your customers and their preferences, has the potential to make you more relevant.

In the digital world, we're seeing a lot more use of classic offline retention strategies such as RFM (recency, frequency, monetary) analysis. RFM is a type of behavioral segmentation approach whereby customers (or visitors, or members…) are categorized on three dimensions:

  • Recency – how recently someone transacted
  • Frequency – how frequently someone has transacted in the past
  • Monetary – the value of those transactions

The idea is that you can develop different strategies for different segments depending on where they are on each dimension of the RFM model. If someone is high on all three dimensions, then they are the most valuable customers that the company has and the retention strategy is to keep trust. There may not be a need for masses of activity as they probably have a string affinity to the organization or brand. However, they need nurturing and looking after, but you don't need to "re-acquire" them. Customers who have low recency but high frequency are ones that are slipping away. Some kind of reactivation strategy is going to be needed to bring them back and it's possible that that might require some kind of incentive.

Customers who are high on the recency axis but low on the frequency axis are new customers and they are a particularly interesting case. The main challenge for an organization is to get them to buy again, and what customer buying theory shows is that recency is the strongest predictor in this model of whether someone will transact again at some point in the future. So if someone has just transacted with you, then that's the best time to try and get them to transact with you again. That's why in the retail catalogue world if you buy something you tend to get a new catalogue with your order.

Completely new customers are a special case because they generally require the most effort to get them to buy again. Once someone has transacted three or four times, it doesn't take so much effort to get them to transact again. So getting someone who has bought for the first time to buy for a second time is incredibly valuable. In some of the work that we've done and I've seen others talk about, there is a strong correlation between someone's propensity to transact again and the time that they receive some form of marketing communication. Again, this is really relevant for new customers; the quicker you can get some form of relevant message to them, the more likely they are to buy again.

RFM is a powerful behavioral segmentation model for retention marketing activity. It's been used for years to good effect in offline direct marketing and retaining and its use is on the increase in digital channels as well. Where I believe classic RFM is a bit blunt though is that is doesn't explicitly take into account what the transaction was and how that knowledge can be used to increase relevance. So RFM on its own is a good start but it needs to be developed so that a customer's interests or preferences can be included in the communication development and targeting as well. This might be looking at actual purchase history, browsing history, or previous marketing collateral that they have responded to. That data can be used to create more meaningful and personal marketing, and so improve propensity to transact again.

By using their customer data to increase relevance, organizations are better placed to execute more cost-effective retention strategies rather than repeat the initial costs of acquisition.

Tags:

ClickZ Live Chicago Join the Industry's Leading eCommerce & Direct Marketing Experts in Chicago
ClickZ Live Chicago (Nov 3-6) will deliver over 50 sessions across 4 days and 10 individual tracks, including Data-Driven Marketing, Social, Mobile, Display, Search and Email. Check out the full agenda and register by Friday, August 29 to take advantage of Super Saver Rates!

ABOUT THE AUTHOR

Neil Mason

Neil Mason is SVP, Customer Engagement at iJento. He is responsible for providing iJento clients with the most valuable customer insights and business benefits from iJento's digital and multichannel customer intelligence solutions.

Neil has been at the forefront of marketing analytics for over 25 years. Prior to joining iJento, Neil was Consultancy Director at Foviance, the UK's leading user experience and analytics consultancy, heading up the user experience design, research, and digital analytics practices. For the last 12 years Neil has worked predominantly in digital channels both as a marketer and as a consultant, combining a strong blend of commercial and technical understanding in the application of consumer insight to help major brands improve digital marketing performance. During this time he also served as a Director of the Web Analytics Association (DAA) for two years and currently serves as a Director Emeritus of the DAA. Neil is also a frequent speaker at conferences and events.

Neil's expertise ranges from advanced analytical techniques such as segmentation, predictive analytics, and modelling through to quantitative and qualitative customer research. Neil has a BA in Engineering from Cambridge University and an MBA and a postgraduate diploma in business and economic forecasting.

COMMENTSCommenting policy

comments powered by Disqus

Get the ClickZ Analytics newsletter delivered to you. Subscribe today!

COMMENTS

UPCOMING EVENTS

Featured White Papers

IBM: Social Analytics - The Science Behind Social Media Marketing

IBM Social Analytics: The Science Behind Social Media Marketing
80% of internet users say they prefer to connect with brands via Facebook. 65% of social media users say they use it to learn more about brands, products and services. Learn about how to find more about customers' attitudes, preferences and buying habits from what they say on social media channels.

Marin Software: The Multiplier Effect of Integrating Search & Social Advertising

The Multiplier Effect of Integrating Search & Social Advertising
Latest research reveals 68% higher revenue per conversion for marketers who integrate their search & social advertising. In addition to the research results, this whitepaper also outlines 5 strategies and 15 tactics you can use to better integrate your search and social campaigns.

Resources

Jobs

    • Partnerships Senior Coordinator
      Partnerships Senior Coordinator (Zappos.com, Inc.) - Las VegasZappos IP, Inc. is looking for a Partnerships Senior Coordinator! Why join us? Our...
    • Assistant Product Listing Ads (PLA) Manager
      Assistant Product Listing Ads (PLA) Manager (Zappos.com, Inc.) - Las VegasZappos IP, Inc. is looking for an Assistant Product Listing Ads (PLA...
    • Marketing Technology Analyst
      Marketing Technology Analyst (Alfred Music) - Van NuysMarketing Technology Analyst DEFINITION Under the general/direct supervision of the head of...