Don't Just Predict the Future, Learn to Change It!

  |  May 8, 2013   |  Comments

Is predictive analytics about to fundamentally change how we market?

If you think predictive analytics is of interest only to data scientists and "quants," think again. It is fast becoming one of the most talked about topics both in business and business schools.

Two recent examples make excellent cases-in-point. I teach a class in new media marketing as an executive-in-residence in Cornell's Johnson Graduate School of Management. I love giving back to my alma mater and am always intrigued with what's top-of-mind for future marketing and entrepreneurial leaders. Guess what produced the biggest buzz in the classes I just taught? You got it - predictive analytics. And at the eMetrics Summit in San Francisco in mid-April, one of the week's most exciting presentations was by our client, Mario Pacini, general manager and CMO of HP Snapfish Americas. Yes, the very same topic.

Of course, human beings have been trying to predict the future since antiquity. Here's what media luminary Marshall McLuhan said about the problem: "We're driving faster and faster into the future, trying to steer by using only the rear-view mirror."

So, is predictive analytics about to fundamentally change how we market? Why the excitement? And what about that rear-view mirror?

The first point I make with my students and clients is that it's not just about predicting the future. Leveraging sophisticated forecasting and optimization models, marketers now possess the much-coveted power to change the future.

General managers and CMOs have always wanted to know how to invest their money to achieve revenue and margin targets. Predictive analytics can help them determine whether they are investing funds in ways likely to meet top-line and bottom-line goals. And the data can also show them if current plans will result in a miss. They know before the fact so they can course-correct to avoid what every CMO or general manager fears - failing to meet revenue and profitability goals. Using predictive analytics, marketing organizations can identify the likely outcome of actions to support decision-making. And they can iteratively adjust those decisions to have increased confidence in outcomes.

How does predictive analytics work? How can businesses forecast with a high degree of accuracy and then determine what to do differently to achieve more desirable outcomes?

The entire field of analytics, of course, rests on a foundation of data. Massive amounts of data provide extraordinary diversity and depth of information about consumer purchase behaviors, interactions on websites, in social media and on mobile platforms, and, of course, in stores. We can now determine which campaigns and promotional offers, delivered over which channels to what devices, drive purchase behavior for specific buyer segments.

So, what can we do with all this big data other than use it as a rear-view mirror reflecting only the past?

This is where data scientists come in to do their magic. Statistical models are built and algorithms are applied to these large, multi-channel datasets to deliver predictions given a proposed course of action. You don't like the forecast? Then apply optimization models to see different variations of the future that may be more appealing.

For a concrete illustration of this process, let's review the example from the recent eMetrics Summit: HP Snapfish, the online photo service giant with more than 90 million members in more than 20 countries.

The HP Snapfish team has a great deal of data about what visitors do on the photo website. For example, who buys which products during the holiday season compared to the summer? Which customers are motivated by promotions, discounts, or delivery options? What drives customer loyalty and repeat purchase behaviors?

Predictive analytics involves deconstructing these levers to assess and identify historical performance drivers and then reconstructing them accordingly to drive future goals. HP Snapfish indicated that it breaks down its customers into different segments according to behavior, such as:

  • Purchases based on promotions/discounts vs. not
  • Types of products purchased
  • Purchase times of the year for different product categories
  • New vs. repeat customers

Based on patterns revealed, the company put together a promotion calendar that matches buyer behaviors. It discovered how one lever is related to another, and how they affect the outcome. It is, after all, about developing a model that is likely to deliver the goals needed, assess performance regularly, readjust the levers, and repeat. It's a logical process.

About those rear-view mirrors?

Are we looking in the mirror and seeing only the past? In one way, we are. This is historical data. But in another way, we aren't. These are sophisticated models that project the future with a lot of accuracy by identifying the factors that lead to an outcome. It's not really a rear-view mirror, but a form of detection, if you will, in the complex arena of analytics.

But don't forget my main point here.

Predictive analytics and optimization models turn all this data into truly actionable intelligence. They tell you what to do. So it really becomes about changing the future. That's why data scientist has been called the sexiest job of the 21st century. They get to do what millennia of fortunetellers have failed to do. Who said destiny was predetermined anyway?

Image on home page via Shutterstock.

ClickZ Live Toronto Twitter Canada MD Kirstine Stewart to Keynote Toronto
ClickZ Live Toronto (May 14-16) is a new event addressing the rapidly changing landscape that digital marketers face. The agenda focuses on customer engagement and attaining maximum ROI through online marketing efforts across paid, owned & earned media. Register now and save!*
*Early Bird Rates expire April 17.


Pelin Thorogood

Pelin Thorogood, a new media marketing and analytics expert, is CEO and a board director of Anametrix, the first cloud-based, real-time marketing analytics platform. Her career as a high-tech innovator includes leading the go-to-market strategy as CMO of WebSideStory (acquired by Omniture/Adobe), extending Peregrine Systems' enterprise software business (acquired by HP) into web-based applications, and in the mid-1990s launching one of the very first mobile B2B applications. She was named one of the "20 Women to Watch" in sales lead management in 2011 and 2012. Pelin holds a B.S. in Operations Research, Masters in Engineering. and MBA degrees, all from Cornell University, where she also serves as Executive-in-Residence for the Johnson Graduate School of Management. Follow Pelin on Twitter @PelinT.

COMMENTSCommenting policy

comments powered by Disqus

Get the ClickZ Analytics newsletter delivered to you. Subscribe today!



Featured White Papers

ion Interactive Marketing Apps for Landing Pages White Paper

Marketing Apps for Landing Pages White Paper
Marketing apps can elevate a formulaic landing page into a highly interactive user experience. Learn how to turn your static content into exciting marketing apps.

eMarketer: Redefining Mobile-Only Users: Millions Selectively Avoid the Desktop

Redefining 'Mobile-Only' Users: Millions Selectively Avoid the Desktop
A new breed of selective mobile-only consumers has emerged. What are the demos of these users and how and where can marketers reach them?


    • Contact Center Professional
      Contact Center Professional (TCC: The Contact Center) - Hunt ValleyLooking to join a workforce that prides themselves on being routine and keeping...
    • Recruitment and Team Building Ambassador
      Recruitment and Team Building Ambassador (Agora Inc.) - BaltimoreAgora,, continues to expand! In order to meet the needs of our...
    • Design and Publishing Specialist
      Design and Publishing Specialist (Bonner and Partners) - BaltimoreIf you’re a hungry self-starter, creative, organized and have an extreme...